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ChemPass

ChemPass:

* A platform company service provider in small molecule preclinical space
* Medicinal chemistry-driven technology development

e Foundedin 2016

ChemPass platforms
* Highly validated: >45 lead optimization collaborations to date
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5/19/2021 NIH Workshop 2021 2



<} ChemPass

Key considerations impacting preclinical cost and timelines

 Historical lead discovery process at Big Pharma
e 2.5-4 years, 250-450 FTE months spent \

D
St

* DMTA cycle time and the # cycles are critical factors &,

\J

* Synthesis is far the longest and most expensive

* 0.5-4 months per cycle
* Data of stragglers miss out on several cycles

* Mindset problem:
* Compelling design ideas are hard to dismiss due to perceived synthetic challenges
* Hard to drop a compound once synthetic effort is underway as there is always “another route”

Off-the-shelf and virtual commercial catalogs will have little impact after lead finding

@SA VI
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Where to take a hit?

* A suggested computer-aided lead optimization workflow (doi.org/10.26434/chemrxiv.14153819.v1):

* Either spending a lot of money in an expensive process to carry compounds that get thrown out by
retrosynthesis analysis

* Or spending a lot of money to run retrosynthesis on 100K-millions of compounds, most of which get
thrown out in the docking/FEP stages: perhaps RAscore can help (DOI: 10.1039/d0sc05401a)

[ Commercially Available BB

Ar
(’Nfi Ro ~300K - PathFinder Enumeration
NTSNTON SN — Property filtering
i :
~110K ¢mm  Full retrosynthesis here?
R, = H, SO,NH, — Docking  Cloud cost
~70K .
Resource intensive: , : —— ML FEP+ selection * License cost
e Cloud cost ~5K

— FEP+ Potency < 100 nM

* License cost Full retrosynthesis here?
 G— y

8 * Cheap

In real projects, typically we have a much bigger chemical space: 30-70% of the resources and cost will be wasted
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A much better process

 What if the entire idea space is synthetically feasible
* Costly processes are carried out on relevant synthetically feasible chemical space
* Butis the space as good as offered by deep generative design or simple enumeration?

Commercially Available BB_) <? ChemPass <? ChemPass

Ar
AR Re ~300K SynSpace Derivatization Design
(N L L ;
N” "N —> Property filtering
: H 1 ~110K
R, = H, SO,NH, —> Docking
, , ~70K
Resource intensive: —— ML FEP+ selection
* Cloud cost ~5K
* License cost l’ FEP+ Potency < 100 nM Full retrosynthesis here?
i  G— Y ‘

 Cheap

All designed structures are worthy of evaluation: no wasted resources and cost
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In silico synthesis as a design concept

* ChemPass Design Technology: What can be synthesized from starting materials, intermediates or lead structures?

Reduction to amine
- Ring closing (Raney Ni)
- Nonselective (Pd/C)

Alkylation
Hydrolysis \
(nonselective) / Deprotection
NC / - Nonselective (Pd/C) Step 1 Reactions Step 2 Reactions Step 3 Reactions
N—gn > Step 1 Products > Step2Products > Step 3 Products
— Acylation
- - — —
. - —
igrt;:rt:;ueenr;t— / CO,Me C mPassW C mPassj C mPassj
reactions / \ S Synthesis Synthesis
. Hydroly3|s. -how K -how K -how
Reduction to alcohol (nonselective)
Reactivity Assessment Reactivity Assessment Reactivity Assessment

e Technology development was required to solve
* Rule-based Al for forward in silico synthesis
* Molecule design based on multistep in silico synthesis
* Control of combinatorial explosion
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SynSpace

e Custom ideation in synthetically feasible space
* >300 transformations in current version

ChemPass
<? SynSpace

* A user-friendly computational tool that can alleviate the boundary between medicinal and computational
chemists making preclinical research more efficient
* No need for synthesis knowledge for computation chemists
* No need for cheinformatics knowledge for medicinal chemists
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SynSpace software: synthesizable chemical space explorations

* Design tasks - SynSpace modules
* Library design (e.g. DEL) e Side-chain analog design

REACTION-BASED DESIGN STARTING MATERIAL-BASED DESIGN

* Scaffold hopping, scaffold analog desig

* 1-step process: 1-Click design 1-CLICK SCAFFOLD DESIGN
« 2-step General scaffold design GENERAL SCAFFOLD DESIGN ENHANCED GSD

* Multi-step and multi-site library enumeration e Retrosynthesis module

LIBRARY ENUMERATION RETROSYNTHESIS

e Automated generative module: Derivatization design e Automated SMBD Generative Design

DERIVATIZATION DESIGN SMBD GENERATIVE DESIGN
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SynSpace 1-Click scaffold design (forward synth/3D overlap)
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* Ring size | L TN

* Intelligent ring closing method included ol gy E05 o s €50 s

* Bicyclic derivatives of monocyclic leads can be easily - ¢
explored

NP »

* New scaffolds with properties, synthetic information, novelty assessment
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Two proprietary generative design tools

2 different user-friendly solutions

<} ChemPass

Component (reagent) based generatlve de5|gn
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What is Derivatization Design?

* A universal generative design technique

ChemPass
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* Full and simple control on
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* Depth of modification at each site: scaffold hopping and/or variational analogs (exploration or exploitation)

* Similarity and desired set size

e Simple user inputs drive the fully automated process

All designed molecules possess vital synthesis, reagent and vendor data

5/19/2021
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Derivatization design example

Setting Value
Max_number_of_variations_with_same_linkage 1
Max_number_of_variations_with_varied_linkage 1
Max_number_of_total_modifications 1
BFEW: Step 0 Step 1 Step 2 Step 3 _ Step 4 A\
o] Q 0 I.Tf\ o if = Q il Ni
(i) - Q / (K = i N
" 0 S~ 07 o """ ~OH @ f\x%’«-j : i v TN N
N | = N |N¢, —— N > T N LN o N |N, %“5 = N~ Y
N ! NT™N = N~ ? ) : . Boc N
H B C\ & N B N - o OH
oC Boc ) _{/ O‘IH Boc O’?J'__NH Br/\h/o‘» [a o \__‘:(O \"Q{
N o] o o]
{
Vo
Similarity_step_0 0.9 Similarity_threshold 0.7 Similarity_threshold 0.7
Step 5 MYy Step 6 )
o] %,_,_JI o .J.' k-
“ ”ﬁj:ﬁ)LD” F (@) ~CSCN g
E F Boc of"N HN-—)& H N N )(_F
“‘{f"\NHz \__‘{ o \__\I—%N-—
F 0 0
Sl ilEyS=reR RN (05 ACS Med. Chem. Lett. 2021, 12, 185-194.
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Site specific variations:

Design results — with settings focused on the scaffold

Step O Step 1
N4 | i

5,214 products \y

. L e

Similarity_step 0 0.9

22 (0.4%)

Step 2

0

Similarity_threshold 0.7

1,876 (36%)

Positional (or reaction step) contribution to the total result set depends on:

Reagent (positional) similarity range set by user — primary driver

Commercial (or custom uploaded) reagent diversity

Reaction type — bimolecular adds much more than monomolecular

5/19/2021
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Similarity_threshold 0.7

3,007 (57%)

60

50

40

30

20

10

Step 3

Step 0

o}

Step 1

Step 2

<} ChemPass

ﬁ%

N HN\>4
Step 4 Step 5
Similarity_step 0 0.9
30 (0.6%) 273 (6%)

Contributions to diversity

Single site

Alternative

Step 3 Step 4 Step 5 Step 6
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Example products

Step O

e}

V4 "
5,214 products I |

>k)k)k)<

2.,
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Step 3 Step 4

Step 5
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Design results — with equal similarity at each position

Step O Step 1 Step 2

[¢]

[¢] R
A /
Similarity_threshold 0.7 1 y _ | A ;
9,264 products NN o N

N
CH, o o CH,
Hacj\ )k JJ\ )<CH3
H,C o o) o) CH,

Site specific variations: 1,511 (16%) 2,564 (28%)

Positional (or reaction step) contribution to the total result set
becomes well distributed

5/19/2021 NIH Workshop 2021
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3,231 (35%)

Step O Step 1

Step 4

30 (0.3%)
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Step 5
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1928 (21%)

Contributions to diversity

Step 2
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ACS Med. Chem. Lett. 2021, 12, 185-194.
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DDR1 case study: comparison of ChemPass Derivatization

[ | @D DD  Overlap Indication (DD vs GD
DD can be deployed in both early and
Size of training set 1,370 8 8 later stages of a project, GD unlikely to
have enough training data at early stages
Docked # cmpds 6,427 6,748 0 Comparable set size: <5% difference
DD samples relevant chemical space
Glide hit rate* 8% 34% much more so than GD. GD hit rate very
low considering its large training set.
Best XP Glide score -16.4 -17.7 DD optimizes leads, GD does not
:ggrgo EOER R E LD -13.0 -15.5 DD set more populated with strong motifs
New scaffold chemotypes of Both can produce novel motifs for new
. 4 6 1 L
interest lead development directions
Synthetic feasibility** mixed high Many challenging compounds in GD

* Hit rate: % compounds passed cutoff for XP docking after SP run

DD) to deep generative design by GAN (GD)

DERIVATIZATION DESIGN HIGHLIGHTS (simplest settings used for this study!)

Derivatization design discovered the key motif change present in the highlight molecule
(cmpd 1) of the Nature article published by Zhavoronkov et al.

A

GD: Refcmpd 1, Glide SP score: -13.9 (3Z0S), IC50: 10nM

CH;

Derivatization design discovered the published improved spirocyclic motif possessing

better ADMET profile (see Ref 2):

N\ = %N—/TN \/‘%

Scaffold hopping

HN Improved ADMET

Ref cmpd 2.13, Glide SP score: -12.4 (BFEW)

DD design: Glide SP score: -11.6 (6FEW)

(Ref 1):

l >3 ﬁ

B
N\>} [ ]

DD design: Glide SP score: -14.5 (3Z0S)

o

~=
N

s
HN
\N/

Ed

e

** GD (deep) generative design examples that are

DERIVATIZATION DESIGN samples more relevant chemical space for DDR1.:

incompatible with rapid cycle times

A C E
)200- )zoo- GD )
74 N p
/ 1004 1004 3 2
N o~ z AE o
8 g 5
2 o 2 o v @ o -
on e ° @ o z @ .
I HC £ § PRy E PN & !
100 A0 A it X
/ W, DDhits . i~ g ,\.‘-: 1
GD s e 0.4
200 2004 * ©Dhits -150 < I
a A 4 Xeray
HC T T . T T T : - -200 o
-200 -100 0 100 -200 -150 -100 -50 0 50 100 150 200
= i - i i Dimension 1
10 synthetic steps 7 synthetic steps t-SNE Dimension 1 t-SNE Dimension 1
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ChemPass
Derivatization Design

Is superior to the industry
standard deep design in this
study

*  Much higher hit rate
* Better docking scores
* More new motifs
Can be used in early lead
optimization
* Needs no large training set
* Can start from 1 hit/lead

Can effectively

* Optimize a lead, or

* Create new lead classes, or

* Do both at the same time
Produces synthetically
feasible compounds

* 85% wet lab success rate
for schemes with 3-6 steps
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Additional in-house tools in AID Platform

 Active learning (AL), desirability scoring, ML/DL models & automated analysis of docking results

* AL enhances throughput and speed

" GWILEY ) PROTEINS: Structure, Function, and Bioinformatics 64:422-435 (2006)
‘Q InterScience

—=— Varianca

H 0, 05 o Random o smch ) _a e e e . eps . . .
Docking of 5-6% of the o I Minimizing False Positives in Kinase Virtual Screens
optimization idea set o] Emanuele Perola”
,"; Vertex Pharmaceuticals, 130 Waverly Sireet, Cambridge, Massachusetts 02139|
recovers 70-75% of £ )
“actives” - ‘ Ligand Strain Energy in Large Library Docking
:: . https://doi.org/10.1101/2021.04.06.438722

4 5 6 7 8
Number of iterations.

Shuo Gu'f, Matthew S. Smith"*+, Ying Yang', John J. Irwin', Brian K. Shoichet'*

* AL selection and desirability scoring outperforms GA

& medicinal chemists * Conformational energy

* H-bonding (present and missing)

* Binding pose classification

Mean(Desirability)
AERARERRR]

¢ . R .
8 L=l e Multiple clash analyses

* Strain energies

8 W0 1 12 13 14
Mean(-Activity score)

Significant distortion of aromatic planarity

2 3 4 5 6 7
Number of AL cycles

* Ligand structural issues

* ML/DLmodels
; “ ‘ “ “ “ | Rapid elimination of decoys: 50-95% of poses get flagged or removed
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Lead generation via scaffold hopping, Derivatization design
and docking pose analyses

New DDR1 motif from 20K analog space: 39 relevant scaffold analogs with
Derivatization design case study: Exploitation with All docked molecules are flagged Exploration with desired features:

N oS .

(/ | A NH = | A R1 F NS N =y
N CH, F n” .
Scaffold 1 Docking scaffold 1 Docking Scaffold 2
Glide Score: -13.1, DLE: 0.62, flagged pOSES! Best Glide Score: -16.7 with DLE: 0.65 s(ilaqfioslg iccc())rr?tr_(jizs with DLE: 0.55, no ﬂags
(Ponatinib: GS: -15.4, DLE: 0.54, IC50: 9 nM) _ -
Glide SP Score: -14.0 with DLE: 0.60, flagged

30K analog space:

/N A R1
Exploitation with Many docked analogs have no flags F>(QJ\N/\©__.{ :/< ICso: >10uM

DERIVATIZATION DESIGN Synthesis and assay

| omwmzmonoeson | 2
Y N Scaffold 1, GS: -15.5 , flagged
Dockin F N . o o
& Scaffold 2 2 cmpds selected r HA© )«ORZ

Best Glide Score: -16.9 with DLE: 0.68, no flags Scaffold 2, GS: -14.9 , no flags

% Activity
2 B 88
i
P
L
] g
:
G 2
=

Exploration and exploitation in synthetically feasible lead analog space become simple, rapid and cost-effective processes
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Summary

* In silico forward-synthesis technologies and user-friendly solutions have been
developed for exploration and exploitation in synthesizable chemical space

* SynSpace users can solve different lead optimization tasks and get actionable results

* Derivatization design is a powerful generative design technique to cover relevant space
around leads

* SynSpace forward-synthesis techniques can generate and optimize leads quickly and
cost effectively
* Compatible with wet and virtual cycles
e Cycle time reduction
e Cycle count reduction
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Contact: Greg Makara

Phone: +36-30-389-9697 ChemPass Ltd. Phone
. Address
Email: gergely.makara@chempassltd.com 7 Zahony street Budapest,

Hungary, ZIP: 1031

@ ChemPass

5/19/2021 20



